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1.1 Introduction

1.1 Introduction

In their seminal work “Theory of Games and Economic Behavior”
(1944), John von Neumann and Oscar Morgenstern develop
the axiomatic foundations of Expected-Utility Theory.1

We will first study their axioms (1.2). . .
. . . from which we will derive the pivotal vNM theorem (1.3).
Then we will look at some basic properties (1.4) of vNM utility
functions . . .
. . . and introduce the concept of risk preferences (1.5).
We will close by looking at the indi�erence curves of vNM utility
functions in the so-called 2-states-of-the-world diagram (1.6).

1
Von Neumann, J. and Morgenstern, O. (1944); Theory of Games and Economic

Behavior; Princeton, N.J.; Princeton University Press
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1.2 The axioms

1.2 The axioms

Some definitions

Let L be a set of lotteries {L1, ..., Ln} © L.
Let there be a “standard lottery” (1 ≠ u, u; xmin, xmax ),

where xmin and xmax are chosen such that the following holds:

xmin Æ x ’ x œ X; xmax Ø x ’ x œ X,

where X is the matrix consisting of the payout vectors Xi
pertaining to lotteries Li œ L,

and where u = Prob(xmax ).
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1.2 The axioms

Axiom 1: Ordering of lotteries

This axiom is sometimes referred to as the “rationality axiom”.

It is perfectly analogous to similar axioms in standard micro
theory under certainty.
Completeness

’ (Li , Lj) œ (L ◊ L) : Li ≤ Lj ‚ Lj ≤ Li
For any two given choices, an individual will always be able to tell
which one she likes better or whether she is indi�erent.

Transitivity

’ (Li , Lj , Lk) œ (L ◊ L ◊ L) : (Li ≤ Lj · Lj ≤ Lk) ∆ Li ≤ Lk
If an individual likes oranges better than apples and apples better
than pears, we can infer that she likes oranges better than pears.

Reflexivity

’ Li œ L : Li ≤ Li
1 lb of apples is no worse than 1 lb of (the same) apples.
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1.2 The axioms

Axiom 2: Preferences over probabilities

Let there be standard lotteries Li = (1 ≠ ui , ui ; xmin, xmax ) œ L

Then: L1 ≤ L2 … u1 Ø u2.
This axiom is akin to the axiom of local non-satiation, which we
know from standard consumer theory.
It says that, given a choice between two standard lotteries,
individuals will prefer the one with more probability mass on xmax .
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1.2 The axioms

Axiom 3: Continuity

’ x œ [xmin; xmax ] : ÷ u(x) œ [0; 1] such that

x ≥ (1 ≠ u(x), u(x); xmin, xmax ).

This says that for any given (certain) payout, it is always possible
to construct a standard lottery such that an individual is
indi�erent between the two.
Example:

xmin = 0, xmax = 10.000, x = 1.000
In this case, the individual is indi�erent between getting a certain
payment of 1.000 or getting 10.000 with probability u(1.000).
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1.2 The axioms

Axiom 4: Independence

’ (Li , Lj , Lk) œ (L ◊ L ◊ L) with Li ≤ Lj and ’ Ê œ [0; 1]:

(1 ≠ Ê, Ê; Li , Lk) ≤ (1 ≠ Ê, Ê; Lj , Lk)

This looks rather plausible.

With both lotteries the individual will get Lk with probability Ê.
With the first lottery, she will get Li with probability (1 ≠ Ê)
With the second lottery, she will only get Lj (which, by assumption,
is equal or worse than Li) with the same probability (1 ≠ Ê).
Hence, the second lottery should not be preferred.

Empirical findings suggest, however, that this independence
axiom may in some instances be problematic.
Indeed, the axiom presupposes that:

Individuals can handle compound lotteries (lotteries over lotteries).
Individuals are aware that there are no complement e�ects between
lotteries.
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1.2 The axioms

Consider this event-tree figure:
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1.3 The vNM theorem

1.3 The vNM theorem
Definition 1.1: vNM utility function

A vNM utility function is a function U(Li) such that

U(Li) =
ÿ

j
piju(xij) = E(u(xi)) © Eu(xi),

where Li œ L, pij is the probability of payout xij œ xi , and u(xi) is
given by axiom 3.

Comments:

Note that u(xi) is a probability function (see axiom 3). . .
. . . but can also be interpreted as a “Bernoulli utility function”.

Why does this make sense?
A vNM utility function is the expected value of an individual’s

utility when facing lottery Li .
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1.3 The vNM theorem

Theorem 1.1: vNM theorem
Any vNM-rational individual (i.e. satisfying axioms 1–4) will be acting
as if she was maximizing a vNM utility function, when choosing
between lotteries:

Li ≤ Lj … U(Li) Ø U(Lj) …

L
ú
i = argmax U(L)

Comments:

This means that when choosing the optimal lottery, an
individual will maximize the expected value of her utility.
Note that the optimal L

ú
i automatically determines the optimal

action aú
i (see 0.Introduction, slide 14).
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1.3 The vNM theorem

Proof: The vNM theorem

WOLOG, we will provide a proof for the simplest case: A lottery
L = (1 ≠ p, p; x1, x2) with only two possible outcomes, x1 and x2.
Proof idea: Show that for any lottery L there exists a probability,
U(L) = (1 ≠ p) · u(x1) + p · u(x2), such that

L ≥ (1 ≠ U(L), U(L); xmin, xmax ).
Proof:

Axiom 3: x1 ≥ (1 ≠ u(x1), u(x1); xmin, xmax ) © I(x1)
Axiom 3: x2 ≥ (1 ≠ u(x2), u(x2); xmin, xmax ) © I(x2)
Axiom 4: L ≥ (1 ≠ p, p; I(x1), x2)
Axiom 4: L ≥ (1 ≠ p, p; I(x1), I(x2))
Plugging in I(x1) and I(x2):

L ≥ (1 ≠ p, p; [(1 ≠ u(x1), u(x1); xmin, xmax )], [(1 ≠ u(x2), u(x2); xmin, xmax ))]
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1.3 The vNM theorem

Proof (continued):

Add up the probabilities for xmax and xmin:
Prob(xmax ) = (1 ≠ p) · u(x1) + p · u(x2)

Prob(xmin) = (1 ≠ p) · (1 ≠ u(x1)) + p · (1 ≠ u(x2))

= 1 ≠ [(1 ≠ p) · u(x1) + p · u(x2)]

= 1 ≠ Prob(xmax )

Define: Prob(xmax ) = U(L) and Prob(xmin) = 1 ≠ U(L)
Hence: L ≥ (1 ≠ U(L), U(L); xmin, xmax )

With U(L) = (1 ≠ p) · u(x1) + p · u(x2).

QED.

13 / 29



Part A. Foundations || Chapter 1: Expected-Utility Theory

1.4 Basic properties of vNM utility

1.4 Basic properties of vNM utility
Transformations

A Bernoulli utility function u(xi) is unique up to a positive
linear transformation.

If u and v are Bernoulli utility functions that represent the same
preferences . . .
. . . then there exist constants a, b, with a œ R and b œ R+ . . .
. . . such that v(xi) = a + bu(xi).

A vNM utility function U(Li) is unique up to a positive
monotonic transformation.

More general than positive linear transformations.
Same assumption as for utility functions in standard consumer
theory.
For example: U(Li) =

q
j piju(xij) and V (Li) = exp[

q
j piju(xij)]

represent the same preferences.

14 / 29



Part A. Foundations || Chapter 1: Expected-Utility Theory

1.5 Risk preferences

1.5 Risk preferences

Definitions of concave functions

Definition 1.2: Concave functions

1 A function f : RN æ R is (strictly) concave if ’ (x1, x2) œ RN

and ’k œ [0; 1] :

f [kx1 + (1 ≠ k)x2] Ø (>) kf (x1) + (1 ≠ k)f (x2).

2 For at least three times continuously di�erentiable functions f , f
is strictly concave if

f ÕÕ(x) < 0 ’ x œ RN .
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1.5 Risk preferences

A concave function

f

x0
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1.5 Risk preferences

Definitions of convex functions

Definition 1.3: Convex functions

1 A function f : RN æ R is (strictly) convex if ’ (x1, x2) œ RN

and ’k œ [0; 1] :

f [kx1 + (1 ≠ k)x2] Æ (<) kf (x1) + (1 ≠ k)f (x2).

2 For at least three times continuously di�erentiable functions f , f
is strictly concave if

f ÕÕ(x) > 0 ’ x œ RN .
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1.5 Risk preferences

A convex function

f

x0
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1.5 Risk preferences

Definitions of linear functions

Definition 1.4: Linear functions

1 A function f : RN æ R is linear if ’ (x1, x2) œ RN and
’k œ [0; 1] :

f [kx1 + (1 ≠ k)x2] = kf (x1) + (1 ≠ k)f (x2).

2 For at least twice continuously di�erentiable functions f , f is
linear if

f ÕÕ(x) = 0 ’ x œ RN .
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1.5 Risk preferences

A linear function

f

x0
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1.5 Risk preferences

Definition of risk preferences

Definition 1.5: Risk aversion
An individual with utility function u is said to be risk-averse if she
prefers the expected value of a lottery L over the lottery itself:

E[u(L)] < u[E(L)]

Definition 1.6: Risk love
An individual with utility function u is said to be risk-loving if she
prefers a lottery L over its expected value:

E[u(L)] > u[E(L)]
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1.5 Risk preferences

Definition 1.7: Risk neutrality
An individual with utility function u is said to be risk-neutral if she is
indi�erent between a lottery L and its expected value:

E[u(L)] = u[E(L)]
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1.5 Risk preferences

Risk preferences and the shape of the utility function

Theorem 1.2: Concave utility functions imply risk aversion
A vNM-rational individual with increasing and concave utility

function u is risk-averse.

uÕ(x) > 0 · uÕÕ(x) < 0 ≈∆ E[u(L)] < u[E(L)]

Comments:

It is typically assumed that (human) individuals have concave
utility functions, i.e. that they are risk-averse.

For other entities (such as firms, organizations, or governments)
this assumption is often relaxed.
The assumption of increasing utility in x assures the basic
rationality principle of non-satiability.
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1.5 Risk preferences

Theorem 1.3: Convex utility functions imply risk love
A vNM-rational individual with increasing and convex utility

function u is risk-loving.

uÕ(x) > 0 · uÕÕ(x) > 0 ≈∆ E[u(L)] > u[E(L)]

Theorem 1.4: Linear utility functions imply risk neutrality
A vNM-rational individual with increasing and linear utility function

u is risk-neutral.

uÕ(x) > 0 · uÕÕ(x) = 0 ≈∆ E[u(L)] = u[E(L)]
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1.5 Risk preferences

Proof: Jensen’s Inequality

WOLOG, we will concentrate on the proof for concave utility

functions (the standard case).
The proofs for convex and linear utility functions are perfectly
analogous.
Proof idea: One can show that for any concave function u(x) the
following holds: E[u(x)] Æ u[E(x)].
You will prove Jensen’s Inequality by means of a Taylor
approximation in one of the next tutorials.
Today, we will just tackle the (far more intuitive) graphical

“proof”.
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1.5 Risk preferences

Graph: Jensen’s Inequality I
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1.5 Risk preferences

Graph: Jensen’s Inequality II
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1.6 Indi�erence curves of vNM utility functions

1.6 Indi�erence curves of vNM utility functions
The indi�erence curves of vNM utility functions follow the same
logic as that of standard utility functions.
In the very simple case of two possible outcomes with
L = (1 ≠ p, p; x1, x2), the indi�erence curves can be depicted in a
so-called “2-states-of-the-world” diagram.

The slope of the indi�erence curve equals the marginal rate of

substitution (MRS)

The MRS indicates the rate at which an individual is willing to
exchange income in state 2 for income in state 1.
U(x1, x2) = (1 ≠ p)u(x1) + pu(x2) ≈∆
dU = (1 ≠ p)uÕ(x1)dx1 + puÕ(x2)dx2 = 0 ≈∆
MRS © dx2

dx1
= ≠ (1≠p)uÕ(x1)

puÕ(x2)

For risk-averse individuals, indi�erence curves are convex.

What about risk-loving and risk-neutral individuals?
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1.6 Indi�erence curves of vNM utility functions

Graph: 2-states-of-the-world diagram
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