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3.1 Introduction

3.1 Introduction

In the previous chapter we learnt how to rank individuals

according to their risk aversion.

In this chapter, we will study how to rank monetary lotteries

with respect to their riskiness, and ultimately, their desirability.

After a motivational example and a short refresher on integration

by parts . . .

. . . we will introduce the concepts of first-order stochastic

dominance (3.2) and second-order stochastic dominance

(3.3).
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3.1 Introduction

Motivational example

Which lottery would a risk-averse individual with u(x) =
Ôx

prefer?

L1 = (
7
8 , 1

8 ; 1, 9), or

L2 = (
1
2 , 1

2 ; 0, 4)

Idea: Use variance as raw measure for risk:

Expected values: E[L1] = 2 = E[L2]

Variances: Var[L1] = 7 > 4 = Var[L2]

So, risk-averse individual should prefer L2, right?

Well, she does not!

E[u(L1)] =
7
8 ·

Ô
1 +

1
8 ·

Ô
9 =

10
8

E[u(L2)] =
1
2 ·

Ô
0 +

1
2 ·

Ô
4 = 1

=∆ L1 º L2

We need a better measure than just the expected value and the

variance of a lottery.
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3.1 Introduction

Stochastic Dominance (SD)

SD is a concept that allows a preference ranking of distributions.

While satisfying the property of transitivity, this concept is not

complete, i.e. it will not be possible to rank all distributions.

First-order stochastic dominance (FOSD). . .

. . . is a very general measure that allows a preference ordering for

all utility functions u with uÕ > 0.

Its downside is that the ranking is very incomplete.

Second-order stochastic dominance (SOSD). . .

. . . is less general, as it only holds for risk-averse individuals with

uÕÕ < 0 < uÕ
.

It allows for a less incomplete ranking than FOSD, even though

there will still be lotteries that cannot be generally ranked by

SOSD either.

There are concepts of higher-order stochastic dominance,

which allow for the ranking of a vaster class of distributions, but

which, in turn, require starker restrictions on utility function u.
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3.2 First-order stochastic dominance

3.2 First-order stochastic dominance

A simple question

Let there be two distributions A and B, described by their

cumulative distribution functions (CDF), FA and FB, respectively.

fA and fB are the respective densities, which exist by hypothesis

(i.e. we assume the CDFs to be continuously di�erentiable).

Question: When will distribution B create a higher expected

utility than distribution A?

Answer: Let’s see.
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3.2 First-order stochastic dominance

Definition of first-order stochastic dominance

Definition 3.1: First-order stochastic dominance

Let FA(x) and FB(x) be two continuously di�erentiable

cumulative distribution functions.

Then FB is said to first-order stochastically dominate FA i�

’x œ R : FB(x) Æ FA(x)

and

÷x œ R : FB(x) < FA(x).

Comments:

Recall that FB(x) Æ FA(x) © ProbB(X Æ x) Æ ProbA(X Æ x)

Intuition: Distribution B always has a lower probability to return

a lower x than distribution A.
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3.2 First-order stochastic dominance

FOSD theorem

Theorem 3.1: FOSD theorem

1 Risk-loving, risk-neutral, and risk-averse individuals with a

positive marginal utility in income prefer the first-order

stochastically dominating distribution of income.

2 This implies that FOS dominated distributions have a lower

expected value than FOS dominating distributions (Necessary,

but not su�cient condition for FOSD).

FB(x) ºFOSD FA(x) =∆ EB[x ] > EA[x ]
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3.2 First-order stochastic dominance

Example for strict domination: Densities
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3.2 First-order stochastic dominance

Example for strict domination: CDFs
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3.2 First-order stochastic dominance

Example for FOS domination: Densities
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3.2 First-order stochastic dominance

Example for FOS domination: CDFs
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3.2 First-order stochastic dominance

Example for FOS non-domination: Densities
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3.2 First-order stochastic dominance

Example for FOS non-domination: CDFs
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3.3 Second-order stochastic dominance

3.3 Second-order stochastic dominance
Definition of second-order stochastic dominance

Definition 3.2: Second-order stochastic dominance

Let FA(x) and FB(x) be two continuously di�erentiable

cumulative distribution functions.

Then FB is said to second-order stochastically dominate FA i�

’x œ [a; b] :

⁄
b

a

FB(x)dx Æ
⁄

b

a

FA(x)dx

and

÷x œ R :

⁄
b

a

FB(x)dx <
⁄

b

a

FA(x)dx .
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3.3 Second-order stochastic dominance

Comments:

Note that the definition of SOSD is basically the same as that for

FOSD but with integrals.

For FOSD, distribution B needs to be better (in expected value)

than distribution A for any value of x .

The CDFs are not allowed to cross.

For SOSD, distribution B only needs to have an expected

cumulated advantage over distribution A for any value of x .

The CDFs are allowed to cross.

More specifically: A is allowed to be better (in expected value) for

high values of x , as long as the advantage of B for lower values of

x is not more than fully compensated.

Reason: Ask yourselves, what could be the intuition for this result?
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3.3 Second-order stochastic dominance

Comments:

Note that the definition of SOSD is basically the same as that for

FOSD but with integrals.

For FOSD, distribution B needs to be better (in expected value)

than distribution A for any value of x .

The CDFs are not allowed to cross.

For SOSD, distribution B only needs to have an expected

cumulated advantage over distribution A for any value of x .

The CDFs are allowed to cross.

More specifically: A is allowed to be better (in expected value) for

high values of x , as long as the advantage of B for lower values of

x is not more than fully compensated.

Reason: Risk aversion implies that the advantage for low x is more

important than the disadvantage for high x .
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3.3 Second-order stochastic dominance

SOSD theorem

Theorem 3.2: SOSD theorem

1 Risk-averse individuals with a positive marginal utility in income

prefer the second-order stochastically dominating

distribution of income.

2 This implies that SOS dominated distributions do not have a

higher expected value than SOS dominating distributions

(Necessary, but not su�cient condition for SOSD).

FB(x) ºSOSD FA(x) =∆ EB[x ] Ø EA[x ]
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3.3 Second-order stochastic dominance

Example for SOS domination: Densities
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3.3 Second-order stochastic dominance

Example for SOS domination: CDFs
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3.3 Second-order stochastic dominance

Example for SOS non-domination: Densities
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3.3 Second-order stochastic dominance

Example for SOS non-domination: CDFs
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3.3 Second-order stochastic dominance

Mean-preserving spread

Definition 3.3: Mean-preserving spread

FA(x) is said to be a mean-preserving spread (MPS) of FB(x) i�

FB ºSOSD FA

and

EA(x) = EB(x).

Comments:

Note that a MPS is the border case between SOSD and

non-SOSD.

If FA(x) is a MPS of FB(x), then FA(x) has a higher variance

than FB(x).
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3.3 Second-order stochastic dominance

Example for MPS: Densities
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3.3 Second-order stochastic dominance

Example for MPS: CDFs
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3.3 Second-order stochastic dominance

The Rothschild-Stiglitz theorem (1970)

The Rothschild-Stiglitz theorem

Let there be two lotteries over x œ [a; b], LA and LB, with

EA(x) = EB(x). The following statements are equivalent:

1 Any and every risk-averse agent will prefer lottery LB over LA.

2 ’x œ [a; b] :
s

x

a
(FA(u) ≠ FB(u))du Ø 0.

3 LA is a MPS of LB.

4 LA is equal to LB but for addition of white noise.

Comments:

That [2] ∆ [1], we have already seen above. We will not prove

[1] ∆ [2] here.

[2] … [3] is true by the very definition of MPS.

[3] … [4], because [4] is just a di�erent way of describing a MPS.

Let us prove [4] ∆ [1].
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3.3 Second-order stochastic dominance

Proof of [4] ∆ [1]

Let lottery LA be defined over y œ [a; b], and lottery LB be

defined over x œ [a; b].

Define white noise as ‘: y = x + ‘, with E[‘ | x ] = 0

Show that both distributions have the same mean

Ey [y ] = Ex ,‘[x + ‘] = Ex [E‘[(x + ‘) | x ]] = Ex [x ]

Show that any risk-averse individual would prefer LB over LA.

Ey [u(y)] = Ex ,‘[u(x + ‘)] ≈∆
Ey [u(y)] = Ex [E‘[u(x + ‘) | x ]] ≈∆
Ey [u(y)] < Ex [u(x + E‘[‘ | x ])] = Ex [u(x)] ≈∆
LA ª LB .

QED.
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