Economic Foundations and Applications of Risk

Part B. Applications
Chapter 4: Optimal Portfolio Choice

Till Stowasser
LMU, 2023

Syllabus

- 4.1 Introduction

■ 4.2 Main model

- 4.3 Comparative Statics $1 \mathbf{V}$: Increase in risk aversion
- 4.4 Comparative Statics III: Increase ip risk
- 4.5 Comparative Statics I: Increase in w_{0}
- 4.6 Comparative Statics II: Increase in i

4.1 Introduction

- One of the most archetypal decisions under risk is the investment decision.
- In this chapter, we will study a simple portfolio choice model, where an individual has to choose between a secure and a risky asset (4.2).
■ We will concentrate on the comparative static properties of the investment decisions with respect to ...

■ . . . the individual's risk aversion (4.3),
■ . . . the riskiness of the risky asset (4.4),

- ... an individual's initial income (4.5), and
- . . the return of the secure asset (4.6).

4.2 Main model

Setup

- An individual can invest her initial wealth, w_{0}, in a riskless asset that pays out $(1+i)$ with certainty ...
■ ... and a risky asset with payout $(1+\tilde{x})$ (where $\mu \equiv E[x]$).
■ Let m denote the amount invested in the risk-free asset and a the sum invested in the risky asset.
■ Final wealth, w, is then given by $w=m(1+i)+a(1+x)$.
- The maximization problem takes the following form:

$$
\max _{a} E[u(w)] \quad E[u((w_{c} \underbrace{}_{\left.\left.w_{0}-a\right)(1+i)+a(1+x)\right)})
$$

Optimal portfolio choice
 $$
w_{0}(1+i)+a(x-i)
$$

- Since the constraint will bind in the optimum, we can rewrite:

$$
\max _{a} E\left[u\left(w_{0}(1+i)+a(x-i)\right)\right]
$$

- The first-order condition (FOC) reads:

$$
\left.\frac{\partial \mathrm{E} u}{\partial a}=\mathrm{E}\left[u^{\prime}\left(\frac{w_{0}(1+i)+a^{\partial u}(x}{\partial u}\right)\right) \cdot(x-i)\right] \stackrel{!}{=} 0
$$

- The second-order condition (SOC) reads:

$$
\frac{\partial^{2} \mathrm{E} u}{\partial a^{2}}=\frac{\mathrm{E}\left[u^{\prime \prime}(\cdot)\right.}{\Theta} \frac{\left.(x-i)^{\circledast}\right]}{\oplus} \stackrel{!}{<} 0
$$

- The SOC is satisfied for risk averse individuals $\left(u^{\prime \prime}<0\right)$.

Important result

$$
E[c \cdot \tilde{x}]=c \cdot E(\tilde{x})
$$

■ Hypothetical question: Can it be optimal that $a^{*}=0$?

$$
\begin{aligned}
\left.\frac{\partial \mathrm{E} u}{\partial a}\right|_{a=0} & =E[u^{\prime}(\overbrace{w_{0}(1+i)}^{w})(\tilde{x}-i)] \quad E(\tilde{x}+c) \\
& =u^{\prime}\left(w_{0}(1+i)\right) E[x-i]=E(\tilde{x})+c \\
& =u^{\prime}\left(w_{0}(1+i)\right)(\mu-i)
\end{aligned}
$$

Can Soc $\stackrel{2}{=} 0$

- Since $u^{\prime}>0$, it follows that
- $a^{*}>0 \Longleftrightarrow \mu>i$, and Co foch $22_{2}^{2} \mathrm{OnM}_{2}$ if $\mu=i$
■ $a^{*}=0 \Longleftrightarrow \mu \leq i \quad$ (If restricting a^{*} to non-negative values.)
- This is a strong result: Any risk-averse individual will (to some degree) partake in a risky project if the expected return from doing so is strictly larger than i.
■ Intuition: At the certainty level, risk costs are second-order.

4.2 Main model

Graph: States of the World diagram

A refresher: Implicit function theorem

- For the rest of this chapter, we will look at the comparative static properties of optimal portfolio choice
- For this, we need the implicit function theorem (IFT).

Lemma 4.1: Implicit function theorem

- Let $f(x, y)$ be a continuously differentiable function with $f(x, y)=0$ and $\left.\frac{\partial f}{\partial x}\right|_{x, y} \neq 0$.
- Then, the following equality will hold:

$$
\frac{d x}{d y}=-\frac{\frac{\partial f(x, y)}{\partial y}}{\frac{\partial f(x, y)}{\partial x}}
$$

Intuition of comparative static results

- However, the proofs (for a general utility function) are technically very involved and go beyond what is expected of you in this blocked course
- This is why, it will be sufficient to discuss the intuition of the comparative static results
■ So let's start discussing: What do you believe to be true?
- As risk aversion increases, a^{*}.
- As the riskiness of the risky asset increases, $a^{*} \downarrow$
- As initial income $\left(w_{0}\right)$ increases, $a^{*} \xrightarrow[\rightarrow-\infty]{\rightarrow 9} 9$ for DARA
- As the return of the safe asset (i) increases, a^{*}

$$
\frac{\partial a^{*}}{\partial i}=S E+\frac{I f}{\#}
$$

■ We will verify a few of these results in an exercise for $u(x)=\ln (x)$

