Economic Foundations and Applications of Risk Part B. Applications Chapter 6: Firms under Uncertainty

Till Stowasser

LMU, 2023

Syllabus

Syllabus

F(MR) = E(ML)/ E(P) = E(MC)

- 6.1 Introduction
- 6.2 Risk attitudes of firms
- 6.3 Uncertainty in production decisions
- 6.4 Uncertainty in investments decisions

6.1 Introduction

- The presence of risk influences not only the decisions of individuals ...
- but also the decisions of firms.
- We start with a few remarks on whether firms should be realistically viewed as risk-averse or risk-neutral (6.2).
- We continue by assessing the impact on production decisions, if there is uncertainty about key market or technology parameters (6.3).
- We close by addressing the option value of delaying decisions when there is uncertainty about the profitability of investment projects (6.4).

6.2 Risk attitudes of firms

6.2 Risk attitudes of firms

- For reasons of risk spreading and risk sharing, firms are often modeled as risk-neutral agents.
- However, there are various reasons why firms may be considered as risk-averse decision makers:
- Agency problems within the firm
 - Contract theory: Incentive pay is used to overcome moral hazard in the owner-manager relationship (i.e. the manager's pay is a function of firm performance).
 - Consequence: Instead of maximizing the risk-neutral owners' expected return, risk-averse managers maximize their own utility.
- Quasi-concave payout functions
 - Bankruptcy cost: The risk of bankruptcy leads to non-linearities in the payout schedule. (Loss of firm-specific human capital or the customer base.)
 - Convex tax schedules: Increasing marginal tax rates make higher gross profit less valuable.

6.3 Uncertainty in production decisions

Uncertainty over model parameters

- We will augment the firm's standard production-decision problem with uncertainty over key model parameters.
- There could be uncertainty over market conditions (e.g. input factor prices, or selling prices).
- There could be uncertainty over technology (e.g. the cost function, or the production function).
- We will study the case of uncertainty over the selling price.

6.3 Uncertainty in production decisions

V25(X+C) ~ (/c/(X

Selling-price uncertainty

- Setup: Let w₀ be the firm's initial wealth, a the amount of output produced, c(a) the cost of producing output a, and p the (uncertain) selling price.
- Then, owner's final wealth, $\tilde{w_f}$, is given by $\tilde{w_f} = w_0 + \tilde{p}a c(a)$.
- The decision maker will maximize $E[u(\tilde{w_f})]$.

FOC:
$$\frac{dE[u(\tilde{w}_f)]}{da} = E[u'(w_0 + \tilde{p}a - c(a))(\tilde{p} - c'(a))] \stackrel{!}{=} 0$$

Recall that

 \checkmark

 $Cov(x, y) = E[xy] - E[x]E[y] \iff E[xy] = Cov(x, y) + E[x]E[y]$

Hence, the FOC is equivalent to:

$$\operatorname{Cov}(u'(\cdot), (\tilde{p} - c'(a))) + \operatorname{E}[u'(\cdot)] E[\tilde{p} - c'(a)] \stackrel{!}{=} 0$$

6/14

6.3 Uncertainty in production decisions

$$(\sqrt{v'(\cdot)} (\tilde{\rho}))$$

Since c'(a) is not a random variable, the FOC reduces to

If the firm is risk-neutral, this optimality condition reduces to $E[\tilde{p}] = c'(a)$, since risk neutrality implies linear utility:

6.3 Uncertainty in production decisions

- If the firm is risk-averse, the FOC becomes E[p̃] > c'(a), inducing reduced production when compared to a situation without risk:
 - Ceteris paribus, as \tilde{p} decreases, so does final wealth \tilde{w}_f , which implies increasing $u'(\tilde{w}_f)$.
 - Hence, sgn{Cov $(u'(\cdot), \tilde{p})$ } < 0, implying $-\frac{Cov(u'(\cdot), \tilde{p})}{E[u'(\cdot)]} > 0$.
- Intuitively, one may think of $-\frac{\text{Cov}(u'(\cdot),\tilde{p})}{\text{E}[u'(\cdot)]}$ as some kind of additional "psychological" marginal cost from having to produce under uncertainty. $MC \not\leftarrow Shrew$

6.4 Uncertainty in investment decisions

Uncertainty over the investment return

- We will augment the firm's standard investment-decision problem with uncertainty over the return of the investment project.
- Let there be one (irreversible) investment project, which triggers one-time costs of *I*.
- Its return $\tilde{\pi}(t)$, t = 1, ... is assumed to be uncertain.
- Standard theory suggests the following decision rule: Invest iff NPV \geq 0,

$$\iff E[\sum_{t=1}^{\infty} \delta^t \tilde{\pi}(t)] - I \ge 0,$$

where $\delta \equiv \frac{1}{1+r}$ is the discount factor and r the real interest rate.

Real-option theory of investment

- However, the so-called real-option theory (ROT) of investment comes to a different conclusion.
- If there is an option to delay the investment project, one can let time work in ones favor and reduce the uncertainty.
- This is closely related to chapter 8 which addresses the value of information.
- The following example illustrates the intuition of ROT.

ROT example

- Setup:
 - *I* = 1600 EUR
 - *r* = 0.1
 - In t = 0, the project will certainly yield a payoff of 200 EUR.
 - In $t \in [1; \infty]$, the project will with equal probability yield a constant annual payoff of either 100 EUR or 300 EUR.

According to standard theory, the project should be undertaken:

• NPV = E[
$$\sum_{t=0}^{\infty} \delta^t \tilde{\pi}(t)$$
] - $I = 200 + \sum_{t=1}^{\infty} \delta^t \frac{300 + 100}{2} - I$
= $\sum_{t=0}^{\infty} \frac{200}{(1,1)^t} - 1600 = \frac{200}{1 - \frac{1}{1,1}} - 1600 = 600 > 0$

- According to ROT, however, it may be wiser to postpone the investment decision by one period.
- The firm can make itself better off by buying an option to invest rather than committing to investing right away

6.4 Uncertainty in investment decisions

- What would the firm do if it waited one period (t = 1)?
 - If $\pi(t=1) = 100 \Rightarrow \text{NPV}(t=1) = 1100 1600 < 0$. In this case, the project should be refrained from.
 - If $\pi(t=1) = 300 \Rightarrow \mathsf{NPV}(t=1) = 3300 1600 \rightarrow 0$ this case, the project should be commenced.

• What is the NPV at t = 0 of the following strategy: Wait for one period and invest iff $\pi(t = 1) = 300$?

$$NPV(t=0) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{NPV(t=1)}{1,1} = \frac{1}{2} \cdot \frac{1700}{1,1} = 773$$

$$Pr(\pi = 100)$$

Recall that the project where the firm had to make its decision in t = 0 had a NPV(t = 0) = 600.

- Hence, the value of the flexibility option F is 173 EUR.
 - 173 is the maximum amount the firm would be willing to buy for the option to make the investment

6.4 Uncertainty in investment decisions

- This flexibility introduces three effects:
 - The firm will lose 200 EUR in t = 0.
 - The firm will gain $I(1 \delta)$, because investment costs are due one period later. Hence, $I \uparrow \Rightarrow F \uparrow$
 - The firm will get an annual return of 300 EUR instead of ³⁰⁰⁺¹⁰⁰/₂ EUR (in expectation), because it no longer has to bear that uncertainty.

It is not always optimal to wait

- In our example $\pi_0 = 200$ and $\pi_1 = 1, 5\pi_0$ or $\pi_1 = 0, 5\pi_0$ with equal probability.
- If $\pi_0 < 97$ it is not optimal to invest at all (even the good case will make a loss)
- If $\pi_0 > 249$ it is optimal to invest in any case (even the bad case will make a profit)
- Only if $97 < \pi_0 < 249$, it is optimal to wait and invest only if the good case arises

6.4 Uncertainty in investment decisions

Final remarks on ROT

In this context, waiting is **equivalent to buying a signal.**

- The firm buys the signal by foregoing a certain profit of 200 EUR in t = 0.
- We will see in chapter 8, that a rational decision maker will never seek costly information unless there is a chance that the information may actually change what she is going to do.
- ROT is used in various contexts:
 - Labor markets (job offers, job search)
 - Oil Reserves
 - Product Development (e.g. electric cars)
 - R&D
 - Law changes
 - Marriage
 - Suicide

— ...